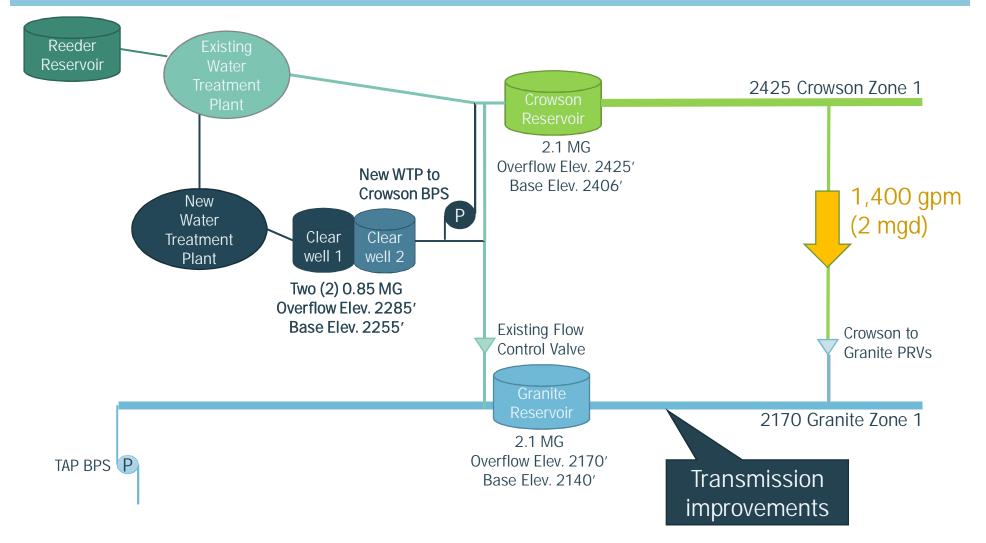


CITY OF ASHLAND WATER MASTER PLAN STATUS UPDATE

AGENDA

- Chapter 5 System Analysis Update
- Chapter 6 CIP Update
- Draft Water Master Plan


CHAPTER 5 SYSTEM ANALYSIS

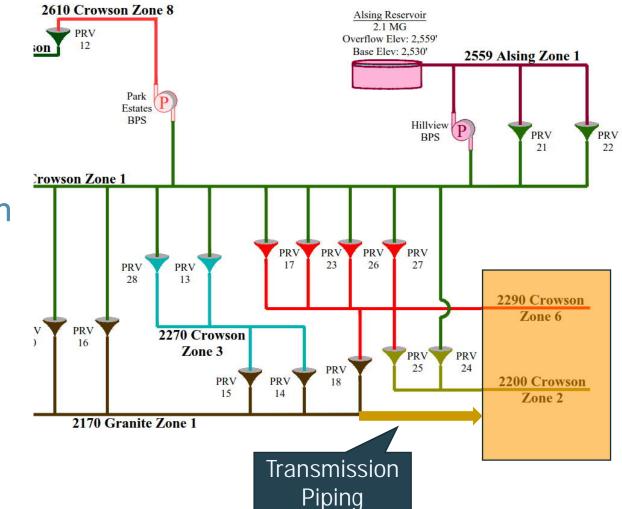
WATER SYSTEM CHALLENGES

- 1. Moving from a Gravity System to a Partial Gravity System
- 2. Granite Reservoir is Aging and in a Poor Location
- 3. Oversized Alsing Reservoir
- 4. Fire Flow Deficiencies at Highest Customers (Park Estates and South Mountain)
- 5. TAP Emergency Supply Cannot Reach Crowson Zones
- 6. Pressure Extremes in Many Locations
- 7. Inability to Meet Higher Fire Flow Standards
- 8. Potential Storage Deficiency
- 9. Many Aging, Undersized Pipes

INTEGRATION OF THE NEW WTP

INTEGRATION OF THE NEW WTP - APPROACH

Phase 1


- Build the WTP to Crowson BPS to current demand needs (continue to rely on Crowson to Granite PRVs)
 - BPS Capacity = 3,200 gpm
- Reduce Crowson to Granite PRV settings to reduce flow
- Temporary replace PRV 9 (Grandview & Wimer)
- Phase 2
 - Build Granite Zone Transmission Improvements
 - 16-inch Granite Street Pipe (FY30)
 - 12-inch Scenic Dr/Nutley St Pipe (Mid-Term)

INTEGRATION OF THE NEW WTP - APPROACH

Phase 3

- Rezone lowelevation Crowson zones to Granite
- WTP to Crowson BPS Capacity = 1,650 gpm

WATER SYSTEM CHALLENGES

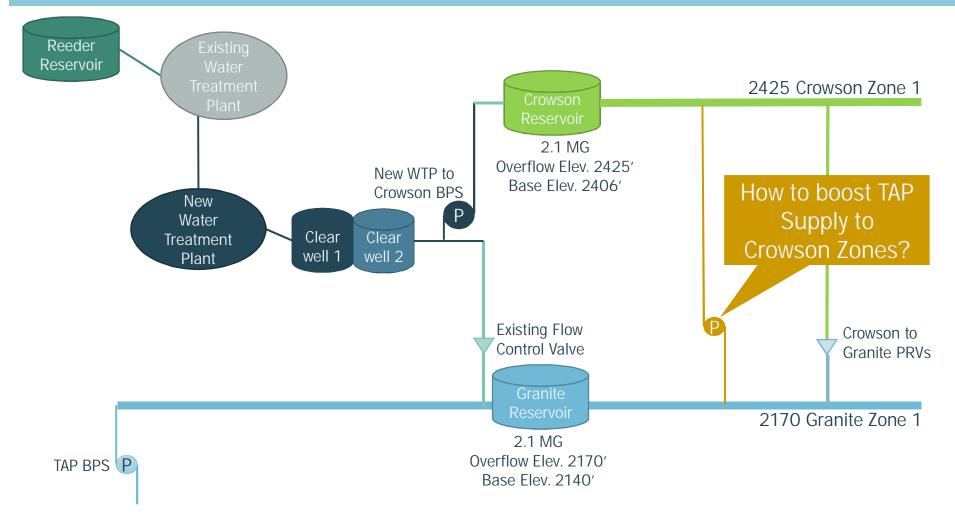
- 1. Moving from a Gravity System to a Partial Gravity System
- 2. Granite Reservoir is Aging and in a Poor Location
- 3. Oversized Alsing Reservoir
- 4. Fire Flow Deficiencies at Highest Customers (Park Estates and South Mountain)
- 5. TAP Emergency Supply Cannot Reach Crowson Zones
- 6. Pressure Extremes in Many Locations
- 7. Inability to Meet Higher Fire Flow Standards
- 8. Potential Storage Deficiency
- 9. Many Aging, Undersized Pipes

STORAGE REQUIREMENTS

- Under current conditions and storage criteria, City is 0.37 MG deficient (1.34 MG in the future)
- Recommendations
 - Revise criteria to reflect emergency TAP supply and a new reliable, resilient WTP
 - Expand Alsing Zone
 - Implement conservation
- Results in excess storage capacity

GRANITE RESERVOIR REPLACEMENT

- Aging
- Requires major improvements (>\$500k for basic improvements)
- Poor location



BELLINGHAM

GRANITE RESERVOIR IS CRITICAL FOR THE TAP SUPPLY OPERATION

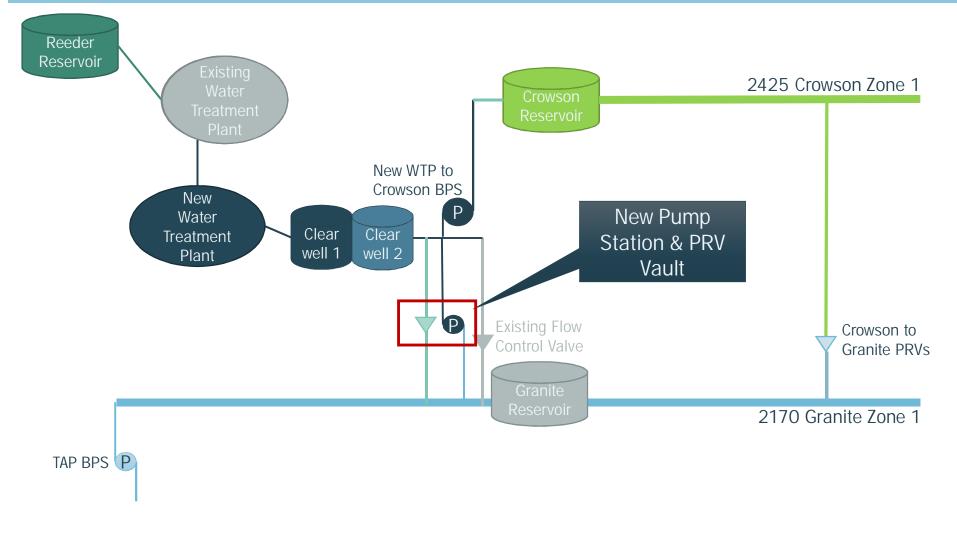
GRANITE RESERVOIR ALTERNATIVES

- 1. Repair Granite Reservoir
- 2. Replace (relocate) Granite Reservoir
- 3. Abandon Granite Reservoir, modify TAP BPS
- 4. Abandon Granite Reservoir, rely on new Granite to WTP BPS with complex operations

ALT 1 – REPAIR GRANITE RESERVOIR

• Pros

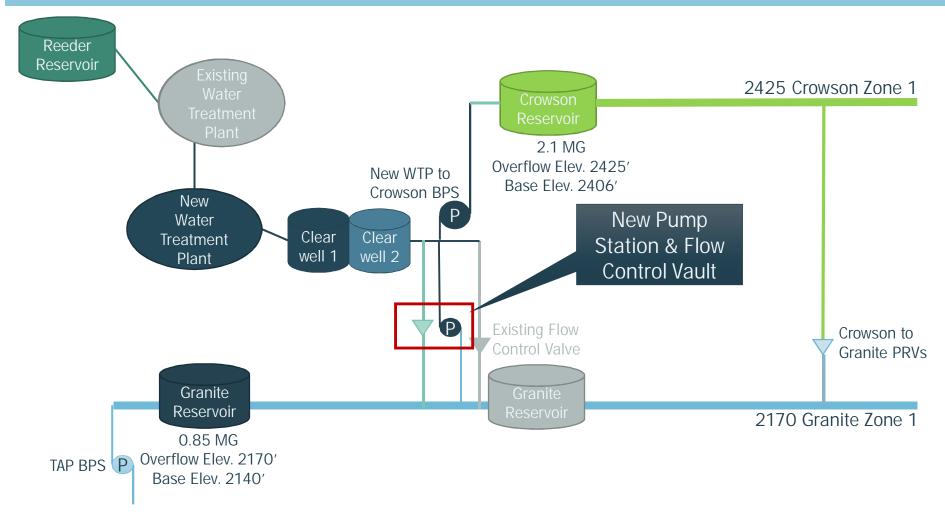
- No change to current system hydraulics
- Continues to simplify TAP Emergency Supply operations
- Eliminates need for second WTP clearwell
- Cons
 - Costly repairs
 - Reservoir remains in a high risk location


ALT 3 – ABANDON GRANITE RESERVOIR, MODIFY TAP BPS

• Pros

- No repairs needed for Granite Reservoir
- Low cost
- Cons
 - Limits expansion of TAP BPS to 3.0 mgd
 - Creates a more complex operation
 - May require other transmission improvements to achieve an even hydraulic grade

ALT 4 – ABANDON GRANITE RESERVOIR, NEW GRANITE TO WTP BPS, COMPLEX OPERATIONS



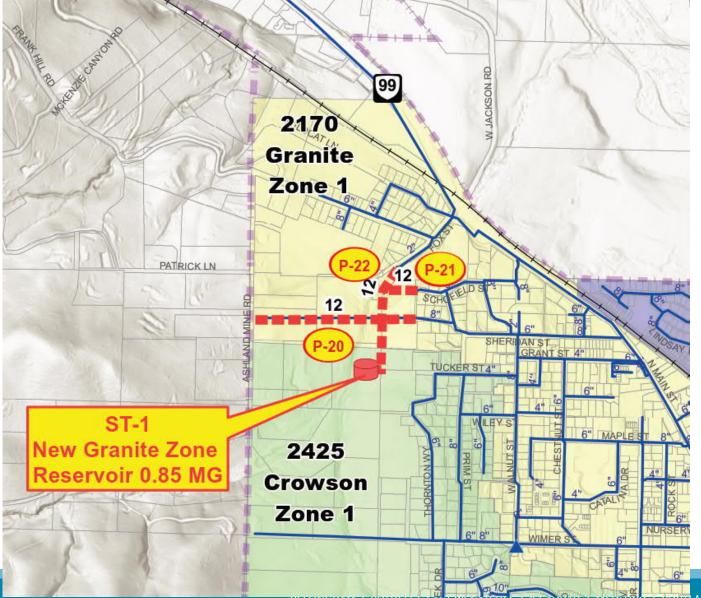
ALT 4 – ABANDON GRANITE RESERVOIR, NEW GRANITE TO WTP BPS, COMPLEX OPERATIONS

- Pros
 - No repairs needed for Granite Reservoir
 - Low cost
- Cons
 - Creates a complex operation
 - May require other transmission improvements to achieve an even hydraulic grade

ALT 2 – RELOCATE GRANITE RESERVOIR & BUILD TAP BPS

ALT 2 – RELOCATE GRANITE RESERVOIR & BUILD TAP BPS

• Pros


- Ideal for operation of Granite Zone and TAP Emergency Supply
- Eliminates need for second clearwell
- Reduces cost of Granite Street pipe improvement
- Coincides with pipes needed for new development

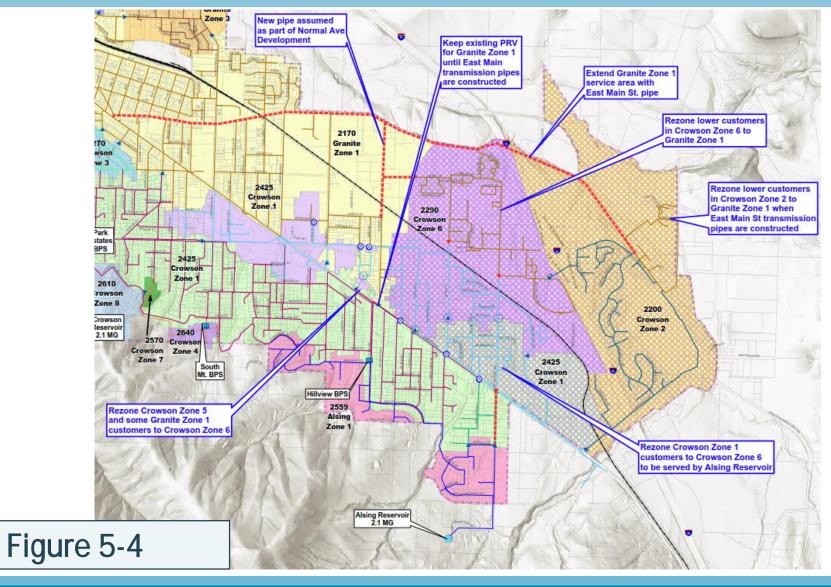
• Cons

- Highest Cost
- Requires short-term continued reliance on existing Granite Reservoir

NEW GRANITE RESERVOIR CONCEPTUAL LOCATION

NEW GRANITE RESERVOIR STRATEGY

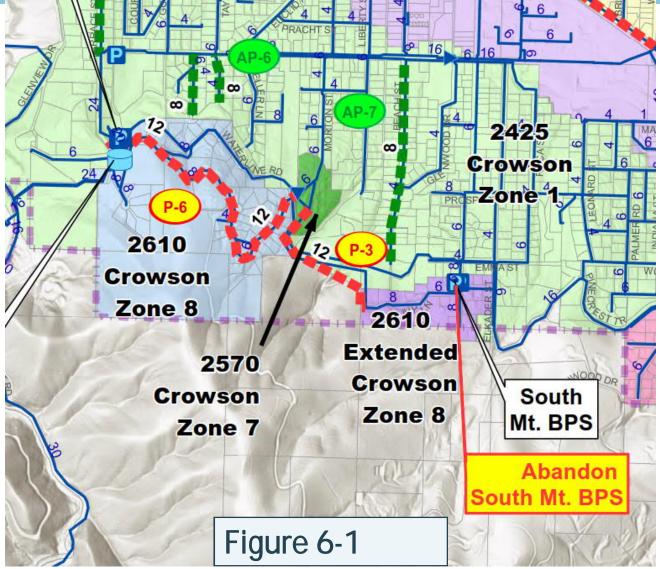
- Increase pipe size in Fox Street (scheduled for FY20)
- 2. Property acquisition
- 3. 16-inch pipe in Granite Street & 12-inch pipe in Scenic Dr/Nutley
- 4. New Granite to WTP Pump Station & Flow Control Valve
- 5. New Granite Reservoir & piping
- 6. Abandon existing Granite Reservoir CIP Schedule for Mid-Term



WATER SYSTEM CHALLENGES

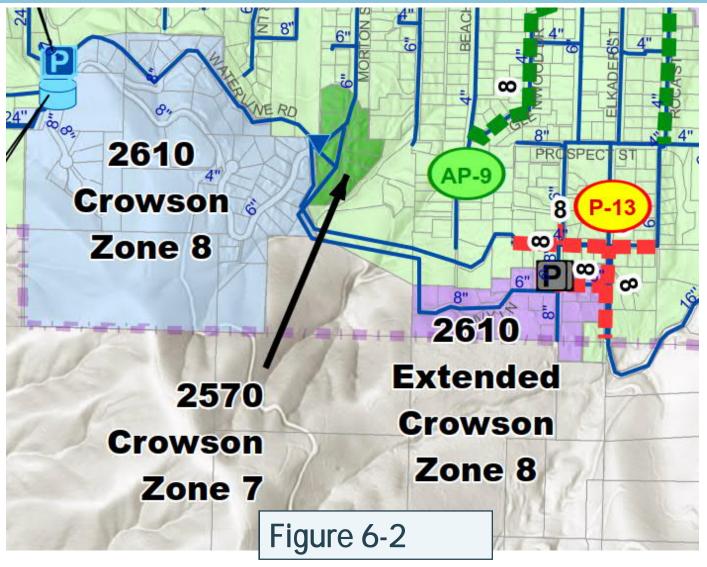
- 1. Moving from a Gravity System to a Partial Gravity System
- 2. Granite Reservoir is Aging and in a Poor Location
- 3. Oversized Alsing Reservoir
- 4. Fire Flow Deficiencies at Highest Customers (Park Estates and South Mountain)
- 5. TAP Emergency Supply Cannot Reach Crowson Zones
- 6. Pressure Extremes in Many Locations
- 7. Inability to Meet Higher Fire Flow Standards
- 8. Potential Storage Deficiency
- 9. Many Aging, Undersized Pipes

ALSING RESERVOIR EXPANSION


RH2

WATER SYSTEM CHALLENGES

- 1. Moving from a Gravity System to a Partial Gravity System
- 2. Granite Reservoir is Aging and in a Poor Location
- 3. Oversized Alsing Reservoir
- 4. Fire Flow Deficiencies at Highest Customers (Park Estates and South Mountain)
- 5. TAP Emergency Supply Cannot Reach Crowson Zones
- 6. Pressure Extremes in Many Locations
- 7. Inability to Meet Higher Fire Flow Standards
- 8. Potential Storage Deficiency
- 9. Many Aging, Undersized Pipes



P-3 AND P-6 CONNECT CROWSON ZONES 7 & 8, ABANDON SOUTH MTN BPS

RH2

P-13 REZONING STUDY AND PIPE IMPROVEMENTS

WATER SYSTEM CHALLENGES

- 1. Moving from a Gravity System to a Partial Gravity System
- 2. Granite Reservoir is Aging and in a Poor Location
- 3. Oversized Alsing Reservoir
- 4. Fire Flow Deficiencies at Highest Customers (Park Estates and South Mountain)
- 5. TAP Emergency Supply Cannot Reach Crowson Zones
- 6. Pressure Extremes in Many Locations
- 7. Inability to Meet Higher Fire Flow Standards
- 8. Potential Storage Deficiency
- 9. Many Aging, Undersized Pipes

PIPE IMPROVEMENTS

- Rezone Studies
- Annual pipe improvement budget
- Focus on replacing undersized, aging pipes
- Focus on low fire flow areas, then on meeting new criteria

CHAPTER 6 CAPITAL IMPROVEMENT PLAN

PROJECT PRIORITIZATION

- 1. Currently planned projects for next two years
 - Current CIP
 - New WTP and associated infrastructure
 - Park Estates Pump Station and infrastructure
- 2. Projects that resolve significant fire flow deficiencies (<50 percent of criteria)
- 3. Projects that reduce supply from Crowson to Granite Zones (for improved operational efficiency)
- 4. Projects that correct high pressure conditions

CHANGES SINCE MAY AWAC MEETING

- Added a long-term planning period (FY40+)
- Incorporated City direction on Granite Reservoir and boosting of TAP Supply
- Adjusted timing of several projects
- Pipe Projects
 - Kept annual pipe improvements to ~\$1M
 - Allocated smaller projects to \$300,000 annual repair program
 - Identified/verified other projects
 - Removed some projects

CAPITAL IMPROVEMENT PLAN – SUPPLY

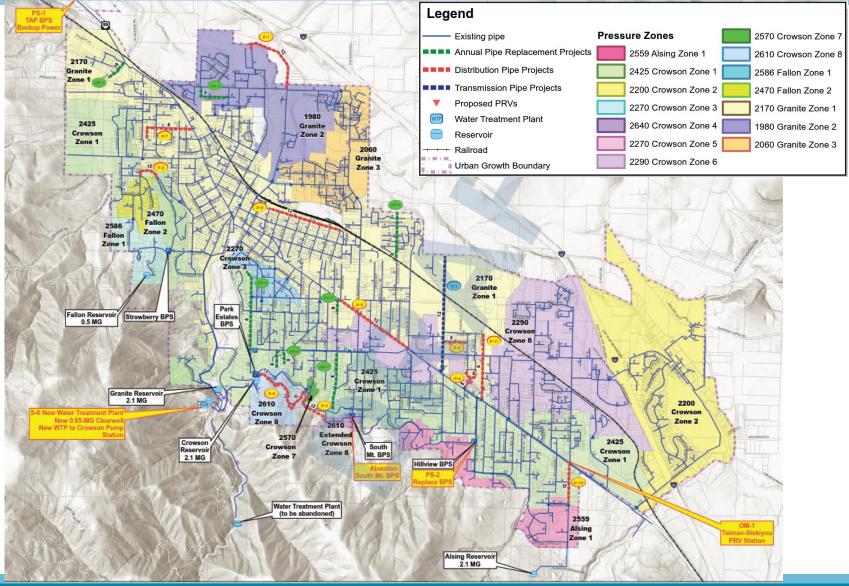
		TOTAL	PLANNI	NG PERIOD	SDC	
PROJECT NO.	DESCRIPTION	PROJECT	SHORT-TERM	MID-TERM	LONG-TERM	ELIGIBILITY
		COST	FY20-29	FY30-39	FY40+	(%)
S-1	Dam Safety Improvements	\$4.8M	\$4.8M	\$ -	\$-	13%
S-2	Ashland (TID) Canal Piping	\$3.5M	\$3.5M	\$-	\$-	66%
S-3	East and West Forks Transmission Line Rehab	\$2.1M	\$2.1M	\$-	\$-	0%
S-4	Reeder Reservoir Intake Repairs	\$0.1M	\$0.1M	\$-	\$-	0%
S-5	Reeder Reservoir Sediment Removal	\$1.7M	\$0.6M	\$0.6M	\$0.6M	75%
S-6	7.5-MGD Water Treatment Plan	\$30.7M	\$30.7M	\$-	\$ -	10%
S-7	WTP Backwash Recovery System	\$2.8M	\$ -	\$2.8M	\$ -	10%
S-8	TAP System Improvements	\$50K	\$50K	?	?	10%
S-9	Deferred WTP Improvement Projects	?	\$-	?	?	10%
	Total Supply Projects	\$45.8M	\$41.9M	\$3.4M	\$0.6M	
DH2		BELLINGHAM L I	BOTHFULL FAST WENATCH	IFE L ISSAOIJAH T M		

CAPITAL IMPROVEMENT PLAN – STORAGE

PROJECT NO.		TOTAL	PLANNI	NG PERIOD	(YEARS)	SDC	
	DESCRIPTION		SHORT-TERM	MID-TERM	LONG-TERM	ELIGIBILITY (%)	
		COST FY20-29	FY20-29	FY30-39	FY40+		
ST-1	New 0.85-MG Granite Zone Reservoir	\$2.8M	\$ -	\$2.8M	\$ -	33%	

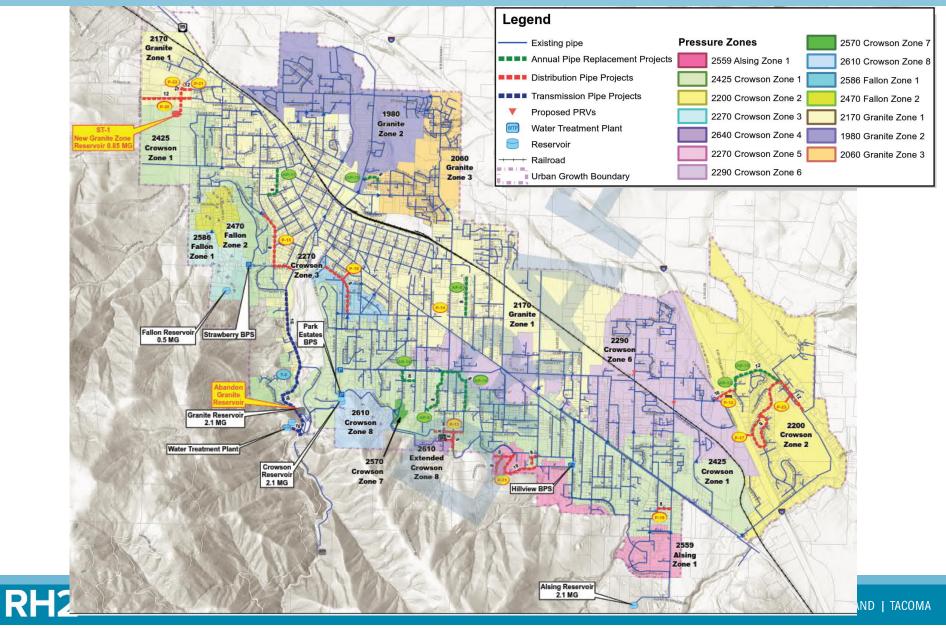
CAPITAL IMPROVEMENT PLAN – PUMPING

		TOTAL	PLANNI	NG PERIOD	(YEARS)	SDC
PROJECT NO.	DESCRIPTION	PROJECT	SHORT-TERM	MID-TERM	LONG-TERM	ELIGIBILITY
		COST	FY20-29	FY30-39	FY40+	(%)
PS-1	TAP BPS Backup Power	\$0.4M	\$0.4M	\$-	\$-	10%
PS-2	Hillview BPS Replacement	\$1.5M	\$1.5M	\$-	\$-	8%
PS-3	Granite to WTP BPS	\$0.6M	\$-	\$0.6M	\$-	10%
	Total Pumping Projects	\$2.5M	\$1.9M	\$0.6M	\$-	

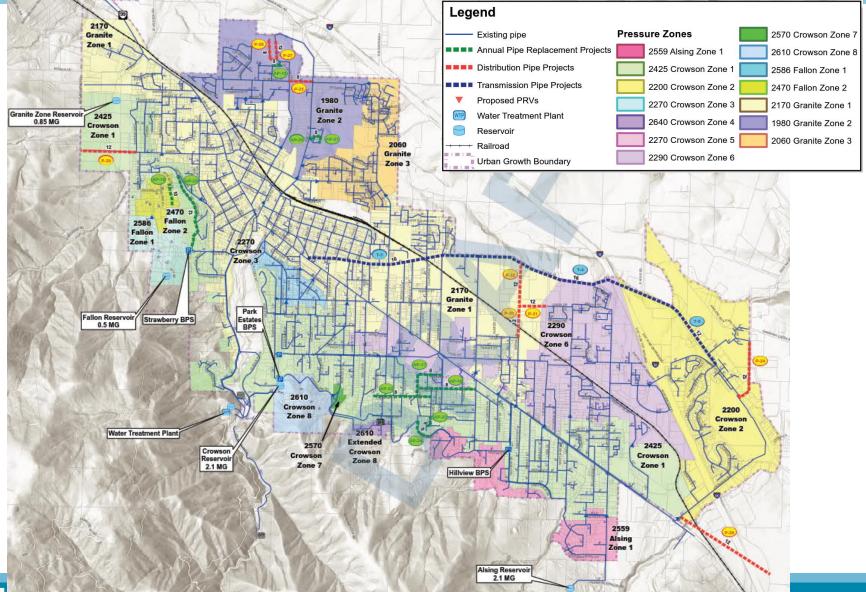


CAPITAL IMPROVEMENT PLAN – PIPING

PROJECT NO.		TOTAL	PLANNING PERIOD (YEA SHORT-TERM MID-TERM LON	(YEARS)	SDC	
	DESCRIPTION	PROJECT		MID-TERM	LONG-TERM	ELIGIBILITY (%)
		COST	FY20-29	FY30-39	FY40+	
AP-1 to AP-25	Annual Pipe Replacement	\$9.0M	\$3.0M	\$3.0M	\$3.0M	10%
P-1 to P- 32	Distribution Pipe Projects	\$15.5M	\$6.4M	\$7.1M	\$2.0M	10%
T1-T5	Transmission Pipe Projects	\$9.0M	\$0.6M	\$2.2M	\$6.2M	80%
	Total Pipe Projects	\$33.5M	\$10.0M	\$12.3M	\$11.2M	



CIP FIGURE 6-1 SHORT-TERM



CIP FIGURE 6-2 MID-TERM

CIP FIGURE 6-3 LONG-TERM

CAPITAL IMPROVEMENT PLAN – 0&M

		TOTAL	OTAL PLANNING PERIOD (YEARS)			SDC
PROJECT NO.	DESCRIPTION	PROJECT	SHORT- TERM	MID-TERM	LONG- TERM	ELIGIBILITY (%)
			FY20-29	FY30-39	FY40+	
OM-1	Tolman Creek Road PRV Station	\$75K	\$75K	\$-	\$ -	8%
OM-2	Hydrant Replacement Program	\$2.2M	\$0.6M	\$1.6M	\$ -	0%
OM-3	Telemetry Upgrades	\$80K	\$80K	\$ -	\$ -	10%
OM-4	AMI/AMR Evaluation	\$60K	\$60K	\$ -	\$-	10%
OM-5	Pipe Connection/PRV Adjustments from Rezone Studies	\$200K	\$-	\$200K	\$-	0%
OM-6	Clay St and Tolman Creek Road PRV Stations	\$150K	\$ -	\$150K	\$-	10%
OM-7	Pressure Relief Valves	?	?	\$ -	\$ -	10%
	Total O&M Projects	\$2.8M	\$0.9M	\$2.0M	\$-	
BLIO						

RH2

CAPITAL IMPROVEMENT PLAN – STUDIES

		TOTAL	PLANNIN	NG PERIOD	SDC	
PROJECT NO.	DESCRIPTION	PROJECT	SHORT-TERM	MID-TERM	LONG-TERM	ELIGIBILITY
		COST	FY20-29	FY30-39	FY40+	(%)
RS-1	TAP Water Master Plan & Future Updates	\$150K	\$50K	\$50K	\$50K	10%
RS-2	Risk and Resilience Assessment and Emergency Response Plan	\$150K	\$150K	\$ -	\$ -	10%
RS-3	Rezoning Study	\$50K	\$50K	\$ -	\$ -	10%
RS-4	Water Master Plan Updates	\$600K	\$100K	\$250K	\$250K	100%
	Total Recommended Studies	\$950K	\$350K	\$300K	\$300K	

TOTAL CIP

RH2

	TOTAL	PLANN	NING PERIOD (YEARS)		
CATEGORY	PROJECT	SHORT-TERM	MID-TERM	LONG-TERM	
	COST	FY20-29	FY30-39	FY40+	
SUPPLY	\$45.8M	\$41.9M	\$3.4M	\$0.6M	
STORAGE	\$2.8M	\$ -	\$2.8M	\$ -	
PUMP STATION	\$2.5M	\$1.9M	\$0.6M	\$ -	
PIPES	\$33.5M	\$10.0M	\$12.3M	\$11.2M	
OPERATIONS AND MAINTENANCE	\$2.8M	\$0.9M	\$2.0M	\$ -	
RECOMMENDED STUDIES	\$1.0M	\$0.4M	\$0.3M	\$0.3M	
TOTAL CIP	\$88.3M	\$55.0M	\$21.3M	\$12.0M	

DRAFT WATER MASTER PLAN

WATER MASTER PLAN CHAPTERS

- Chapter 1 Introduction
- Chapter 2 Existing System
- Chapter 3 Land Use & Population
- Chapter 4 Demand Projections
- Chapter 5 System Analysis
- Chapter 6 Capital Improvement Plan
- Chapter 7 Financial Analysis

QUESTIONS?