From snowmelt and rainfall sources to your tap, the City of Ashland reliably delivers the highest quality water possible. Our primary source is Ashland Creek, collected in Reeder Reservoir. We are pleased that all water treated meets and exceeds state and EPA water quality regulations. We encourage you to take the time to become familiar with the information contained in this report.

At the City, we are stewards of your water system and work diligently to maintain the best water for your needs.

THE CITY OF ASHLAND PROVIDES EXCEPTIONAL WATER FOR YOU.

Our fresh clean water is a limited resource. Please follow these guidelines when you use it in your yard.

It is best not to water every day. Less frequent, deep sprinkling will encourage deeper root growth and plants won’t become stressed as quickly when the weather is hot.

Adjust your watering schedule throughout the summer to account for current weather conditions. Doing this can significantly reduce the amount of water consumed.

Water between 8:00 p.m. and 6:00 a.m. to avoid losing water to wind and evaporation.

YOUR VIEWS ARE WELCOMED!

If you would like to learn more about issues affecting your community, City Council meetings are the first and third Tuesdays at 7 P.M. bi-weekly.

CONTACT INFORMATION AND RESOURCES

Greg Hunter
Water Plant Supervisor
541-488-5345

Mike Morrison
Public Works Superintendent
541-552-2325

Paula Brown
Public Works Director
541-552-2411

Julie Smitherman
Water Conservation Specialist
541-552-2842

Oregon Health Authority
Drinking Water Program
971-673-0405

EPA Safe Drinking Hotline
800-426-4791

Forest Land Commission
541-552-2044

Jackson County Health Department
541-774-8284

TTY Number (hearing impaired)
800-735-2980

City Council meetings
541-488-4082
1st and 3rd Tuesdays at 7:00 pm

Steve Walker
Water Distribution Supervisor
541-552-2325

Medford Water Commission
541-774-2728

Talent Irrigation District
Board Meetings
541-535-1529
1808 ASHLAND DRINKING WATER DATA

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SAMPLE DATE</th>
<th>RANGE PPM</th>
<th>DETECTED PPM</th>
<th>AVERAGE PPM</th>
<th>MCL PPM</th>
<th>MCLG PPM</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPPER</td>
<td>8/15/2017</td>
<td>0.205</td>
<td>0.12</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of plumbing systems</td>
<td></td>
</tr>
</tbody>
</table>

0 of 30 samples collected exceeded action levels.

ASHLAND UNREGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SAMPLE DATE</th>
<th>RANGE PPM</th>
<th>DETECTED PPM</th>
<th>AVERAGE PPM</th>
<th>MCL PPM</th>
<th>MCLG PPM</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>2018</td>
<td>15 - 37</td>
<td>YES</td>
<td>26</td>
<td></td>
<td></td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>HAA4 & Bromine compounds</td>
<td>2018</td>
<td>0.1 - 3.1</td>
<td>YES</td>
<td>0.95</td>
<td></td>
<td></td>
<td>By-product of disinfection</td>
</tr>
<tr>
<td>HAA9</td>
<td>2018</td>
<td>2.9 - 29.0</td>
<td>YES</td>
<td>21.1</td>
<td></td>
<td></td>
<td>By-product of disinfection</td>
</tr>
</tbody>
</table>

The state allows us to monitor for some contaminants less than one per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

MEDFORD WATER COMMISSION

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SAMPLE DATE</th>
<th>RANGE PPM</th>
<th>DETECTED PPM</th>
<th>AVERAGE PPM</th>
<th>MCL PPM</th>
<th>MCLG PPM</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPPER</td>
<td>8/23/2016</td>
<td>0.842</td>
<td>0.599</td>
<td>1.3</td>
<td>1.3</td>
<td>Corrosion of plumbing systems</td>
<td></td>
</tr>
<tr>
<td>NITRATE</td>
<td>8/21/2018</td>
<td>10</td>
<td>0</td>
<td>Naturally present in the environment. Also from septic tanks, fertilizers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBIDITY</td>
<td>DAILY</td>
<td>0.04 - 0.08</td>
<td>YES</td>
<td>0.05</td>
<td>0.3</td>
<td>N/A</td>
<td>Erosion & stream sediments</td>
</tr>
<tr>
<td>SODIUM</td>
<td>8/21/2018</td>
<td>0.52</td>
<td>4</td>
<td>4</td>
<td>Treatment additive for disinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLIFORM BACTERIA</td>
<td>WEELKY</td>
<td></td>
<td>ND</td>
<td>Detected</td>
<td>Absent</td>
<td>Naturally present in the environment</td>
<td></td>
</tr>
<tr>
<td>TOC RAW</td>
<td>MONTHLY</td>
<td>0.29 - 1.81</td>
<td>YES</td>
<td>1.26</td>
<td></td>
<td>No Limit</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>TOC FINISHED</td>
<td>MONTHLY</td>
<td>0.57 - 0.82</td>
<td>YES</td>
<td>0.66</td>
<td></td>
<td>No Limit</td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

MEDFORD WATER COMMISSION UNREGULATED CONTAMINANTS

<table>
<thead>
<tr>
<th>ANALYTE</th>
<th>SAMPLE DATE</th>
<th>RANGE PPM</th>
<th>DETECTED PPM</th>
<th>AVERAGE PPM</th>
<th>MCL PPM</th>
<th>MCLG PPM</th>
<th>TYPICAL SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manganese</td>
<td>2018</td>
<td>0.0 - 3.0</td>
<td>1.31</td>
<td></td>
<td></td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
<tr>
<td>BIG BUTTE SPRINGS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>2018</td>
<td>0.0 - 5.3</td>
<td>2.93</td>
<td></td>
<td></td>
<td>Erosion of natural deposits</td>
<td></td>
</tr>
</tbody>
</table>

DISTRIBUTION

<table>
<thead>
<tr>
<th>AL</th>
<th>ANNO</th>
<th>AMBIENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAbR</td>
<td>0.0 - 1.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

HAAbR: Halogenated Acids

ASHLAND'S watershed precipitation total for 2017-18 was 19.23".

990,030,000 ASHLAND DRINKING WATER PLANT GALLONS TREATED
83,080,000 TALENT IRRIGATION DISTRICT GALLONS PUMPED
67,100,000 MEDFORD WATER COMMISSION GALLONS PUMPED
1,057,130,000 TOTAL GALLONS PROVIDED TO THE CITY OF ASHLAND

SOURCE WATER ASSESSMENT

A source water assessment is available. The greatest risk of contaminants to Ashland's water is soil sedimentation in the watershed.

A MESSAGE FROM THE EPA

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants, potential health effects and questions on information in this section can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4711) or visiting www.epa.gov/safewater.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections.

These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the EPA.

We take steps to eliminate the potential for lead and copper to leach from our pipes and your plumbing by the addition of sodium carbonate. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Ashland is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. We take steps to eliminate the potential for lead and copper to leach from our pipes and your plumbing by the addition of sodium carbonate. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater.

The sources of drinking water [both tap water and bottled water] include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from, septic systems, agricultural livestock operations and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm runoff, domestic wastewater discharges, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, storm water runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organics, which can be by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water run-off, and septic systems.

Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.