

Existing Daniel Meyer Pool Heating System

Historic Annual Heating Consumption

- 20,000 Therms
- 117 tons of CO₂ emissions

Emission-reducing Heating Sources

Solar

Solar Thermal Arrays

Ground

- GSHP
- Direct-Use Geothermal

Electricity

• ER Boiler

Air

 Air-to-Water Heat Pump

Emission-reduction Heating Sources

Solar

Solar Thermal Array

Ground

- GSHP
- Direct-Use Geothermal

Electricity

ER Boiler

Air

 Air-to-Water Heat Pump

Recommendation

Solar Thermal

Solar Thermal

Solar Thermal

Ground-Source

Vertical closed-loop system operating in cooling mode:

Vertical closed-loop system operating in heating mode:

Image source: nyserda.ny.gov

Ground-Source

Vertical closed-loop system operating in cooling mode:

Vertical closed-loop system operating in neating mode:

Image source: nyserda.ny.gov

Pools never recharge ground source of heat since they are always in heating mode

Constant heating requirement will eventually degrade heat quality of ground source

Direct Use Geothermal

High Variation by site in:

Heating Quality

Water Quality

GPM availability

Given best conditions, estimated well depth =

1,500 meters (\$3-4M)

Image source: epa.gov

Most Cost Effective Path

Existing NG Boiler

117 Tons **CO**₂

22.9 gasoline-powered passenger vehicles driven for one year ?

Electric Boiler

28 Tons CO₂

5.5 gasoline-powered passenger vehicles driven for one year ?

Electric Boiler with Air-to Water HP

14 Tons **CO**₂

2.7 gasoline-powered passenger vehicles driven for one year (?)

Incremental Cost for this Reduction ~ \$600k

Electric Boiler

Electric Boiler with Air-to Water HP

28 Tons

14 Tons **CO**₂

5.5 gasoline-powered passenger vehicles driven for one year ?

2.7 gasoline-powered passenger vehicles driven for one year (?)

Incremental Cost for this Reduction ~ \$600k

PV costs for same reduction ~\$3.5M

Electric Boiler

Electric Boiler with Air-to Water HP

28 Tons

14 Tons CO₂

5.5 gasoline-powered passenger vehicles driven for one year ?

2.7 gasoline-powered passenger vehicles driven for one year ?

Incremental Cost for this Reduction ~ \$600k

~\$4M SHW system cannot reach this level of reduction

Electric Boiler

Electric Boiler with Air-to Water HP

28 Tons CO₂

14 Tons CO₂

5.5 gasoline-powered passenger vehicles driven for one year ?

2.7 gasoline-powered passenger vehicles driven for one year ?

Summary

Reduce 88% of existing GHG emissions by installing Air-to-Water HP with Electric boiler backup

Install minimum PV array size to abide by GET requirement (~23 kW) at Pool Deck or Parking Lot Cover

Consider purchasing carbon offsets to mitigate 14 tons of CO₂

Thank you!

Springfield & Bend, Oregon // SystemsWestEngineers.com

