TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY

1.1 Design Conditions ... 1-1
 1.1.1 Demographics
 1.1.2 Wastewater Flows

1.2 Collection System Evaluation & Recommendations ... 1-2
 1.2.1 Lift Station Evaluation
 1.2.2 Pipeline Condition and Capacity Evaluation
 1.2.3 System Maintenance Evaluation
 1.2.4 Recommended Collection System Improvements

1.3 Effluent Disposal ... 1-4
 1.3.1 Effluent Disposal Options
 1.3.2 Effluent Disposal Recommendation

1.4 Wastewater Treatment .. 1-5
 1.4.1 Existing Facilities
 1.4.2 Recommended Improvements
 1.4.3 Treatment Alternatives
 1.4.4 Biosolids Handling Alternatives
 1.4.5 WWTP Improvement Recommendations

1.5 Capital Improvements Plan & Financing ... 1-8
 1.5.1 Summary of Costs
 1.5.2 Other Annual Costs
 1.5.3 Financing / Rates

2.0 REGULATORY REQUIREMENTS

2.1 Collection System Regulations ... 2-1
 2.1.1 Pump Station Design Regulatory Requirements
 2.1.2 Pipeline Regulatory Rules

2.2 Treatment Plant Regulations .. 2-3
 2.2.1 NPDES Permit Requirements
 2.2.2 TMDL Requirements
 2.2.3 Anticipated Additional Future Permit Requirements
 2.2.4 Plant Reliability Criteria
 2.2.5 Oregon’s Regulations for Biosolids Management
 2.2.6 GASB-34 Requirements
 2.2.7 Greenhouse Gas Policies

2.3 Recycled Water (Reuse) Regulations .. 2-11

2.4 City Policies & Guidelines .. 2-11
 2.4.1 Phosphate Ban
 2.4.2 Pretreatment Ordinance
 2.4.3 Other Policies and Procedures
3.0 COLLECTION SYSTEM CONDITIONS

3.1 Wastewater Collection System Overview ..3-1
3.2 Lift Station Evaluation ...3-1
 3.2.1 Creek Drive Lift Station
 3.2.2 Grandview Lift Station
 3.2.3 Nevada Street Lift Station
 3.2.4 North Main Lift Station
 3.2.5 North Mountain Lift Station
 3.2.6 Shamrock Lift Station
 3.2.7 Winburn Lift Station
 3.2.8 Ashland Creek Lift Station
 3.2.9 Lift Station Design Standards
 3.2.10 Lift Station SCADA
 3.2.11 Summary of Lift Station Recommendations
3.3 Collection System Pipeline Conditions ...3-7
3.4 Collection System Maintenance ...3-8
 3.4.1 Maintenance Goals
 3.4.2 CCTV Log Evaluation
 3.4.3 Maintenance Management System
3.5 Divisions ...3-11
3.6 Recommendations ..3-12

4.0 WASTEWATER DESIGN CONDITIONS

4.1 Area Demographics ...4-1
4.2 Study Area & Land Use ...4-2
4.3 Wastewater Treatment Plant Flow Data ..4-2
 4.3.1 Historical Trends
 4.3.2 Average Day and Peak Day Flow Rates
 4.3.3 Seasonal Variations in Flow Rates
 4.3.4 Peak Hourly Flow Rates
 4.3.5 Per Capita Flow Data
4.4 Infiltration & Inflow ..4-6
4.5 Design Flows ...4-9
 4.5.1 Existing Flows
 4.5.2 Projected Flow from Future Growth
4.6 Future Flow Rates ..4-10

5.0 COLLECTION SYSTEM MODEL DEVELOPMENT & EXISTING SYSTEM EVALUATION

5.1 Model Selection ...5-1
5.2 Model Update ..5-1
5.3 Model Calibration ..5-1
 5.3.1 Flow Monitoring
 5.3.2 Dry Weather Calibration
 5.3.3 Wet Weather Calibration
5.4 Existing System Deficiencies ..5-3
5.5 Pipeline Conditions ...5-4
6.0 EVALUATE FUTURE COLLECTION SYSTEM PERFORMANCE

6.1 Future Flow Rate Projections & Model Scenarios .. 6-1
6.2 Future Deficiencies .. 6-2

7.0 COLLECTION SYSTEM IMPROVEMENT ALTERNATIVES

7.1 Improvement Alternatives .. 7-1
 7.1.1 Priority 1 Alternatives – Address Existing Deficiencies
 7.1.2 Priority 2 Alternatives – Address Future Deficiencies

8.0 COLLECTION SYSTEM IMPROVEMENT PLAN

8.1 Recommended Capital Improvements .. 8-1
 8.1.1 Priority 1 – Address Existing Deficiencies
 8.1.2 Priority 2 – Address Future Deficiencies
 8.1.3 Future Pipelines and Lift Stations

8.2 Operational & Maintenance Improvements .. 8-3
 8.2.1 Infiltration and Inflow Reduction Program
 8.2.2 Collection System Staffing

8.3 Environmental Considerations .. 8-5

9.0 WASTEWATER TREATMENT PLANT - EXISTING CONDITIONS & CAPACITY
 EVALUATIONS

9.1 Process Description ... 9-1
9.2 NPDES Permit Compliance ... 9-2
 9.2.1 CBOD₅
 9.2.2 TSS
 9.2.3 Ammonia
 9.2.4 Phosphorus
 9.2.5 E. coli
 9.2.6 Excess Thermal Load
 9.2.7 Dissolved Oxygen
 9.2.8 Summary of NPDES Permit Limits Compliance

9.3 Plant Capacity ... 9-7
 9.3.1 Influent Pumping – Ashland Creek Lift Station
 9.3.2 Headworks
 9.3.3 Biological Process
 9.3.4 UV Disinfection
 9.3.5 Membrane Filtration
 9.3.6 Outfall
 9.3.7 Solids Handling
 9.3.8 Electrical and SCADA

9.4 Evaluation of Operations .. 9-34
 9.4.1 Staffing
 9.4.2 Operational Theory
 9.4.3 Testing Practices
 9.4.4 Safety

9.5 Carbon Footprint .. 9-38
9.6 Summary of Existing Plant & Deficiencies .. 9-38
10.0 EFFLUENT DISPOSAL ALTERNATIVES

10.1 Background..10-1
10.2 Reuse Options ..10-1
 10.2.1 Option 1: Recycling Water on Imperatrice Ranch Property
 10.2.2 Option 2: City-Wide Recycling
10.3 Relocated Discharge Options...10-4
 10.3.1 Option 3: Discharge to Talent Irrigation District (TID)
10.4 Options for Continued Discharge to Ashland/Bear Creek10-5
 10.4.1 Option 4: Cooling Tower / Heat Exchanger / Chiller
 10.4.2 Option 5: Trading (Shading)
 10.4.3 Option 6: Blending / Flow Augmentation
 10.4.4 Option 7: Hyporheic (Shallow Groundwater Mixing)
10.5 Summary and Recommendations..10-17

11.0 TREATMENT PLANT IMPROVEMENT ALTERNATIVES

11.1 Introduction ..11-1
11.2 Using Agricultural Recycling & Controlled Discharge to Optimize11-1
11.3 Treatment Alternatives for Year-Round Discharge11-1
 11.3.1 No Action Alternative
 11.3.2 Reduction of Peak Flows
 11.3.3 Expansion of Existing Oxidation Ditch Plant
 11.3.4 Parallel Membrane Plant
 11.3.5 Process Modifications in Existing Tankage
 11.3.6 Summary of Pre-Screening
 11.3.7 Temporary Primary Filter Option
 11.3.8 Annualized Cost Comparison of Selected Liquid Treatment Alternatives
11.4 Biosolids Handling Alternatives ...11-8
 11.4.1 Biosolids Disposal Options
 11.4.2 Biosolids Process Alternatives
 11.4.3 Summary of Pre-Screening of Biosolids Options
 11.4.4 Annualized Cost Comparison of Selected Biosolids Handling Alternatives

12.0 RECOMMENDED TREATMENT PLANT IMPROVEMENTS

12.1 Objectives ..12-1
 12.1.1 Eliminate NPDES Permit Violations
 12.1.2 Prevent Plant Deficiencies
 12.1.3 Stay Ahead of Growth and Maintain Equipment
 12.1.4 Improve Solids Handling
 12.1.5 Improve SCADA System
12.2 Selected Treatment Improvements ..12-3
 12.2.1 Description
 12.2.2 Land Availability
 12.2.3 Environmental Impacts
 12.2.4 Operation Theory
 12.2.5 Staffing
12.3 Summary & Recommendations 12-5
 12.3.1 Construction Phasing Plan
 12.3.2 Cost Estimates

13.0 CAPITAL IMPROVEMENT PLAN
 13.1 Basis for Estimate of Probable Cost 13-1
 13.1.1 Construction Costs
 13.1.2 Contingencies
 13.1.3 Engineering Costs
 13.1.4 Administrative Costs
 13.2 Summary of Costs ... 13-1
 13.3 Other Annual Costs ... 13-3

14.0 FINANCIAL PLAN
 14.1 Financial Forecast ... 14-1
 14.1.1 Cash Flows from Operating Activities
 14.1.2 Cash Flows from Capital & Related Activities
 14.1.3 Cash Flows from Investing Activities
 14.1.4 Cash & Equivalents
 14.2 Summary ... 14-5
 14.3 Other Financing Options 14-6
 14.3.1 Oregon Department of Environmental Quality, State Revolving Fund (DEQ SRF)
 14.3.2 Oregon Infrastructure Finance Authority (IFA)
 14.3.3 U.S. Economic Development Administration (EDA)
 14.3.4 Bonneville Power Association, Energy Smart Industrial Program (BPA ESI)
 14.4 Recommendations .. 14-8

CHARTS
 Chart 2.1 Regulation Subparts Applicable to Ashland WWTP
 Chart 2.2 Class A Pathogen Reduction Requirements
 Chart 2.3 Vector Attraction Reduction Options
 Chart 4.1 Historical Population Trends and Projections (1971 - 2060)
 Chart 4.3 Monthly WWTP Influent and Precipitation for 2005 - 2009
 Chart 4.4 Daily WWTP Influent and Precipitation, Oct 2005 - Apr 2006
 Chart 4.5 Daily WWTP Influent and Precipitation, May 2006 - Apr 2007
 Chart 4.6 Categorized Sewer Flows (2008 - 2010)
 Chart 5.1 Sample Dry Calibration Site 8 Modeled vs. Observed Flows (MH 09AC-040)
 Chart 5.2 Sample Dry Calibration Site 7 Modeled vs. Observed Flows (MH 10BC-039)
 Chart 6.1 Residential Unit Curve (Site 3 – Manhole 4BB-016)
 Chart 6.2 Commercial Unit Curve (Site 9 – Manhole 4CC-030)
CHARTS (Continued)

Chart 9.1 Historical Dissolved Oxygen (DO) Values
Chart 9.2 Influent CBOD Load
Chart 9.3 Influent TSS Load
Chart 9.4 Generalized Sludge Process Flow Diagram
Chart 10.1 Calculated WWTP Effluent Temperature at the Mean Wet Bulb Temperature
Chart 10.2 Calculated WWTP Effluent Temperature at the Minimum Wet Bulb Temperature
Chart 10.3 Calculated WWTP Effluent Temperature at the Maximum Wet Bulb Temperature
Chart 10.4 Bear Creek – Potential Solar Load Reduction by River Mile
Chart 10.5 Waste-Management Area

TABLES

Table 1.1 Summary of Historical and Projected Ashland Flow Rates
Table 1.2 City of Ashland Wastewater Improvements Opinion of Probable Cost
Table 2.1 Summary of Existing NPDES Effluent Limits
Table 2.2 Requirements for Recycling of Effluent by Category
Table 3.1 Ashland Sewer Pipe Summary
Table 3.2 Collection System Maintenance Annual Goals
Table 3.3 Diversion Structures
Table 4.1 Historical and Projected Populations (1971 - 2060)
Table 4.2 Residential Density Assumptions (2011 BLI – Table 1)
Table 4.3 Historical Sewer Flows at WWTP, MGD (2005 - 2009)
Table 4.4 Wastewater Treatment Plant Peak Flow Events
Table 4.5 Historical Per Capita Sewer Flows, GPCD (2005 - 2009)
Table 4.6 Historical Precipitation, Total Inches (2005 - 2009)
Table 4.7 Sewer Flows Assumed for Nonresidential Growth (GPAD)
Table 4.8 Projected Future Ashland Flow Rates
Table 5.1 Summary of Estimated Total System Inflow and Infiltration
Table 6.1 Future Commercial Peak Day Design Flows
Table 6.2 Development Levels Triggering Improvements
Table 9.1 Design Flows
Table 9.2 Influent Pump Station – Peak Hour Flows
Table 9.3 Biological Process Projected Flows and Loadings
Table 9.4 Projected Ashland WWTP Operation under 2010 Flows and Loadings
Table 9.5 Projected WWTP Operation under 2015 Flows and Loadings with a Third Oxidation Ditch
Table 9.6 Projected WWTP Operation under 2015 Flows and Loadings with a Fourth Secondary Clarifier
Table 9.7 Projected WWTP Operation under 2030 Flows and Loadings
Table 9.8 Projected WWTP Operation under 2060 Flows and Loadings
Table 9.9 2010 Membrane Condition
TABLES (Continued)

Table 9.10 2011 Membrane Condition
Table 9.11 Suggested Membrane Cassette Replacement Schedule
Table 9.12 WAS Generation at the Ashland WWTP
Table 9.13 Projected WAS Flow Rates for Stabilization and Dewatering
Table 9.14 1998 Design Criteria for Existing Sludge Handling Equipment
Table 9.15 Summary of Treatment Capacity by Plant Process
Table 10.1 Bear Creek – Heat Source Analysis Results
Table 10.2 Ashland WW Disposal Option Comparison Chart
Table 11.1 Flow Equalization
Table 11.2 Expansion of Existing Oxidation Ditch Plant
Table 11.3 Parallel MBR Plant
Table 11.4 Staged Aeration
Table 11.5 IFAS System
Table 11.6 In-Ditch MBR Plant
Table 11.7 Primary Filter
Table 11.8 Primary Treatment / Disinfection
Table 11.9 Comparison of Costs for Selected Treatment Alternative
Table 11.10 Estimated Average Annual Biosolids Produced
Table 11.11 Equipment Commonly Used in Treating Biosolids
Table 11.12 Dewatering Equipment Comparison
Table 11.13 Landfill Disposal
Table 11.14 Co-Compost Site
Table 11.15 Thermal Dryer
Table 11.16 Comparison of Costs for Selected Sludge Management Alternatives
Table 13.1 City of Ashland Wastewater Improvements Opinion of Probable Cost
Table 14.1 Financial Forecast
Table 14.2 Priority 1 Capital Improvements Schedule – Inflated at 3.5% per Year
Table 14.3 Sewer Rates & Forecast Rate Increases

APPENDICES

APPENDIX A – FIGURES
- Figure 3.1: Existing Collection System
- Figure 3.2: Sewer Basins
- Figure 5.1: Existing System Capacity
- Figure 6.1: Study Area
- Figure 8.1: Master Plan
- Figure 12.1: Future WWTP Expansion

APPENDIX B – EXISTING SYSTEM DATA
- NPDES Permit
- Lift Station Data
- Pipeline Condition Evaluation
APPENDIX C – FLOW DATA
- WWTP Influent & Precipitation Data
- Water Usage Analysis
- Design Flows Method
- Summary of Flow Monitoring Data

APPENDIX D – MODEL CONSTRUCTION & SCENARIO RESULTS
- Dry Calibration Data
- Existing & Future Capacity Analysis (Model Results)

APPENDIX E – TREATMENT EVALUATION SUPPORT DATA
- Membrane Replacement Technical Memorandum
- Staffing Analysis
- Recycle/Reuse Analysis
- Hyporheic Evaluation
- Carbon Footprint Evaluation

APPENDIX F – COST ESTIMATES
- Collection System Costs
- Treatment System Costs
 - WWTP Improvements
 - Shading/Outfall Relocation
 - Treatment Alternatives
- Short-Lived Assets
- 6-Year Capital Improvements Plan
- Rogue Valley Sewer Disposal Option

APPENDIX G – FINANCIAL ANALYSIS