

Ashland Canal Piping Project Council Study Session

April 1, 2019

City Council Study Session Expectations

- Recap of project goals, project location and E.coli data
- Condition of canal today; deferred maintenance concerns
- Community feedback and input
- Presentation of alternatives and pros and cons of each
 - Common concerns with all alternatives
 - Alt 1 Replace Entire Canal with New 24" HDPE Pipe
 - Alt 2 Replace Open Sections of Canal with New 24" and 30" HDPE Pipe and Line Existing Piped Sections
 - Alt 3 Replace Open Sections of Canal with Urethane Under-liner and new Concrete Channel, Line Existing Piped Sections; canal remains open
 - Alt 4 Aggressively Maintain Existing Canal; Phase Concrete Repairs over the Top of Existing Concrete Canal Channel; canal remains open Note: Alternative #4 replaces the "do nothing" alternative as doing nothing is not truly feasible.

City Council Study Session Expectations - continued

- Cost comparisons
- Next steps
 - Council decision May 7, 2019 (Council Business Meeting)
 - Final Design and Permitting
 - June 2019 June 2020; depending on the selected alternative
 - Construction
 - start October 2020 depending upon the selected alternative

Project Purpose & Benefits

Purpose:

- Replace 10,700 feet of Ashland's open-channel seasonal irrigation canal from Starlite Place to Terrace Street with below-ground pipe to improve the water quality in Ashland Creek and to assist the City's goal for overall water conservation.
 - Recommended in the 2012 Water Master Plan

Benefits:

- Minimize water contaminants and health risks in Ashland Creek
- Conserve water and reduce water loss due to seepage and evaporation
- Maximize water resource *Right Water Right Use*
- Protect drinking water sources

Ashland Canal Maintenance Issues

Current Concrete Liner Condition

Community Feedback & Input

- Impacts on trees & vegetation
- Aesthetics of water "feature"
- •Not a community priority
- Impacts on wildlife
- •Homeowner access during construction
- Disturbance and removal of homeowner bridges, fencing, rocks, driveways, etc.
- Water efficiency / quality

8

- Project costs
- Property Values
- Trail access
- Drainage
- Wildfire
- Privacy

Alternatives Assumptions

Alternative Criteria

- Meet minimum design criteria of 7.2 cubic feet per second flow rate
- Ensure maximum upstream water elevation of 2,327.05 feet

Funding

- Alternatives 1-3 assume the City will apply for new grant funding and/or secure addition loan funding from the DEQ
- Potential grant funding sources:
 - Natural Resources Conservation Service
 - Oregon Watershed Enhancement Board
 - US Bureau of Reclamation
 - Oregon Water Resources Department
 - Rogue Basin Partnership

Alternatives Common Concerns

- Tree loss within the existing canal in construction zones
 - of the 287 trees identified in Siskiyou BioSurvey's report, **less than 100 trees** will need to be removed for any of the alternatives identified
 - the exact number and location of those trees to be removed will be included on final engineering plans
- Unknown true impact to property values; subjective at this time
- City has a maintenance easement for the canal throughout the canal section on all properties
- Of the 69 properties along the project area, 29¹/₂ have dedicated public access easements; 39 do not
 - portions of the "trail" are not accessible
 - ability to fully improve trail connection throughout the canal section is unknown
 - requires Council and Parks prioritization and coordination with property owners

Alternatives Common Concerns - continued

- Historic significance
 - the canal system was constructed in the early 1900s
 - specific historic status of the canal is unknown; not on the historic register
 - will be determined through the permitting stages
- Klamath water rights adjudication is unknown for the basin
 - irrigation water rights challenges began in the basin in 1975 and continue today
- Wildlife impact
 - although this is not a "wildlife corridor", wildlife do frequent the seasonally open canal; if the canal is piped, wildlife must find alternate water sources

Presentation of Alternatives; pros and cons

- Alt 1 Replace Entire Canal with New 24" HDPE Pipe
- Alt 2 Replace Open Sections of Canal with New 24" and 30" HDPE Pipe and Line Existing Piped Sections
- Alt 3 Replace Open Sections of Canal with Urethane Under-liner and new Concrete Channel, Line Existing Piped Sections; canal remains open
- Alt 4 Aggressively Maintain Existing Canal; Phase Concrete Repairs over the Top of Existing Concrete Canal Channel; canal remains open

Net Present Value Calculation

• See Ashland Canal Piping project Preliminary Engineering Report, Adkins, page 7-4

NPV = C + USPW (O&M) - SPPW (S)

C = capital cost

USPW (O&M) = uniform series present worth of annual operation and maintenance cost

USPW = (0&M) *
$$\begin{cases} (1+i)^{n} - 1 \\ i = interest = 0.7\% \\ i * (1+i)^{n} \end{cases}$$

 $n = #years = 60$

SPPW (S) = single payment present worth of salvage value

SPPW = salvage (future value) *
$$\left\{ \frac{1}{(1+i)^n} \right\}$$

Alternative #1 - costs Replace Entire Canal with New 24" HDPE Pipe

Estimated Initial Capital Cost: \$3,095,000 Estimated Life Cycle Cost (NPV) at 60 years: \$3,472,579

*NPV – net present value 2018 costs; Adkins p. 49

includes an anticipate salvage cost of pipe — indicating there is still "life" available in the pipe; HDPE life estimated at 100 years

Alternative #1 – pros and cons Replace Entire Canal with New 24" HDPE Pipe

Pros

- Maximizes water efficiency 23% of water conserved
- Maximizes water quality by reducing new contaminates / E. coli from entering the canal
- Improved trail; potential for more connections
- Restores natural stormwater drainage
 stormwater no longer travels in the canal
- Improved and metered irrigation connections
- Improvements in irrigation service
 less sediment and debris in private lines
- Protection of a secondary potable water source
- Reduces chances of canal failure all new pipe
- Removes seepage risk to foundation failure
- Safer environment for children and pets
- Minimizes water theft

Cons

- Loss of open seasonal waterway
- Loss of trees
 - likely the highest impact on trees (less than 100) as it is full replacement, including the existing piped sections
- Potential increase in trespassing
 - Without the canal to define the easement, trail users may wander on to private space
- Greatest impact to property owners during construction
 - entire section is replaced
 - this alternative has the most excavation
 - excavation is 1-2 feet below existing canal

Alternative #2 – costs Replace Open Sections of Canal with New Pipe (30" and 24" HDPE) and Line Existing Piped Sections

Estimated Initial Capital Cost: \$3,950,000 Estimated Life Cycle Cost (NPV) at 60 years: \$4,339,897

*NPV – net present value 2018 costs; Adkins p. 49

includes an anticipate salvage cost of pipe – indicating there is still "life" available in the pipe; estimated life of HDPE 100 years, anticipate 60 years life for cured in place pipe liners

annualized O&M costs \$12,500

Alternative #2 – pros and cons **Replace Open Sections of Canal with New Pipe** (30" and 24" HDPE) and Line Existing Piped Sections Pros Cons

- Maximizes water efficiency 23% of water conserved
- Maximizes water quality by reducing new contaminates / E. coli from entering the canal
- Improved trail; potential for more connections
- Restores natural stormwater drainage • stormwater no longer travels in the canal
- Improved and metered irrigation connections
- Improvements in irrigation service • less sediment and debris in private lines
- Protection of a secondary potable water source
- Reduces chances of canal failure all new pipe
- Removes seepage risk to foundation failure
- Safer environment for children and pets
- Minimizes water theft

- Loss of open seasonal waterway
- Loss of trees (less than Alt #1)
- Potential increase in trespassing
 - without the canal to define the easement, trail users may wander
- Impacts to property owners during construction
- Transition of new/old can leak over time
 - must be actively monitored
- Highest capital cost
 - \$4 million
 - two different pipe sizes required to maintain capacity and hydraulic head
- Highest life cycle cost
 - \$4.3 million

Alternative #3 - costs Replace Open Sections of Canal with Urethane Under-liner and new Concrete Channel, Line Existing Piped Sections: canal remains open

Estimated Initial Capital Cost: \$2,429,000 Estimated Life Cycle Cost (NPV) at 60 years: \$4,334,379

*NPV – net present value 2018 costs; Adkins p. 49

no salvage value

concrete life 40-60 years with urethane liner; anticipate 60 years life for cured in place pipe liners

annualized O&M costs \$39,000

Alternative #3 – pros and cons Replace Open Sections of Canal with Urethane Under-liner and new Concrete Channel, Line Existing Piped Sections: canal remains open

Pros

- Improves water efficiency 21% of water conserved
- Retains visual and aesthetic value of open seasonal waterway
- Minimal impacts or changes to trail
 - No new trespassing concerns as the canal is visible
- Improved and metered irrigation connections
- Reduces chances of canal failure new urethane liner
- Removes seepage risk to foundation failure
- Lower capital costs (\$2.4 million)

Cons

- Canal is open to contaminates / E. coli intrusion
 - No additional protection to our secondary potable water source
- Water loss to evaporation/transpiration
- Loss of trees (potentially less than Alt #1 and 2)
- Stormwater drainage will still enter the canal
- Canal can flood/overflow, risk to private property
 - Debris and debris dam potential
- Transition of new/old can leak over time; must be actively monitored
- Impact to property owners during construction
- Does not reduce safety concerns for children or pets
- Does not reduce or eliminate water theft

Estimated Initial Capital Cost: \$855,000 Estimated Life Cycle Cost (NPV) at 60 years: \$3,004,658

*NPV – net present value 2018 costs; Adkins revised

no salvage

essentially a huge patching job with concrete slurry placed over the existing concrete; no liner. Anticipated life 20-25 years.

annualized maintenance costs \$45,000

Pros

- Minimal improvements to water efficiency
 - Concrete will continue to crack and seep
- Retains visual and aesthetic value of open seasonal waterway
- Minimal impacts or changes to trail
 - No new trespassing concerns as the canal and easement trail is visible
- Reduces chances of canal failure as sections are repaired
- Removes the seepage risk to foundation failure as sections are repaired
- Least immediate impact to property owners; impacts are more frequent
- Lowest number of trees removed immediately
- Lowest initial capital costs

Cons

- Canal is open to contaminates / E. coli intrusion
 - No additional protection to our secondary potable water source
- Loss of trees
- Water loss to seepage, evaporation, and transpiration
- Loss of volume / capacity with additional concrete layers in the canal
- Stormwater drainage will still enter the canal
- Canal can flood/overflow with risk to private property
 - Debris and debris dam potential
- Transition of new/old can leak over time; must be actively monitored
- Does not reduce safety concerns for children or pets
- Does not reduce or eliminate water theft
- Requires repairs each year; will have to replace some sections of existing concrete and likely line existing pipes

Alternative Comparisons

(2018 Costs)

	Alternative #1	Alternative #2	Alternative #3	Alternative #4
Method	All new 24" pipeline	30" & 24" Pipeline	Replace Canal Liner	Aggressively Maintain
Pipe Material	Corrugated HDPE	Corrugated HDPE	Concrete & Urethane	Phased Repairs
Capital Costs	\$3,095,000	\$3,950,000	\$2,429,000	\$855,000
Annualized O & M	\$12,500	\$12,500	\$39,000	\$45,000
Life of Option	60 - 100 years	60 - 100 years	40 - 60 years	20 - 25 years
Salvage Value	\$354,280	\$335,560	0	0
Net Present Value *	\$3,472,579	\$4,339,897	\$4,334,379	\$3,004,658

- Life Cycle Cost / Net Present Value from Adkins Final Report p. 49
- Net Present Value is based on a 60 year life cycle

16 Obater City

24

Interested in a canal tour?

Next Meeting – alternatives decision: May 7, 2019 Council Business Meeting

More Information: www.ashland.or.us/ashlandcanal

Questions?

Concerns?

25

Thank you!

"We do not see things the way they are, we see them the way we are."

-- Anais Nin

